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Abstract. We describe a simple numerical procedure to investigate the solid-liquid interface 
kinetics by Phase Field (PF) techniques.  The main idea is to consider a one-dimensional slab 
of melted material that is kept highly undercooled by a strong coupling to a heat sink; distinct 
regimes of phase-change can then be studied by varying the Biot number Bi.  In that manner, 
the form factor of  the PF kinetic parameter is obtained by linear regression, using the 

numerical results for the interface speed versus local temperature, in the regime Bi→∞ .  The 
diffuse interface PF model is also compared and validated with respect to classical sharp-
interface results. 
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1. INTRODUCTION 

 
Computer simulation of solidification processes far away from equilibrium is a challenge 

for classical models.  For a pure substance, engineering studies are usually based on the 
assumption that the phase state is a unique function of temperature, thus requiring explicit 

kinetic corrections and somewhat involved schemes to cope with metastable regimes.  Those 
drawbacks can be overcome  ab-initio, by the use of a suitable thermodynamic functional 

which correctly describes the energetics which favors solidification, thus allowing 
undercooled (metastable) states as natural possible solutions.  The phase-field (PF) methods, 

which appeared in the last two decades, are nowadays among the best alternatives to classical 
techniques – they not only include a correct thermodynamic description of phase-change 

processes, but also avoid the explicit tracking of the moving interface (Caginalp, 1980;  
Warren, 1995).   PF algorithms are capable of encompassing virtually any form of anisotropy 

and interface kinetics, and for that reason are currently employed, e.g., for computer 
simulation of 3D dendritic growth (Karma and Rappel, 1996a) and constitutional instability 

during alloy solidification (Braun, McFadden and Coriell, 1994; Lan, Shih and Hsu, 2004). 
In this work, we develop and implement a simple PF algorithm to investigate the 

interface speed and local temperature during rapid directional solidification.  The main 
concern being kinetic effects, we consider a one-dimensional heat transfer problem between 

an uniform heat sink and a slab of a pure substance, which undergoes a liquid-solid phase 
change.  Heat transport is only by conduction inside the material (we neglect convective 

effects for fast solidification), and the coupling with the heat sink is accounted for by the 

value of the Biot number (Bi).  The regime Bi >> 1 ensures that the melt is maintained highly 

supercooled at all times; a fraction of the latent heat released at the interface warms the liquid 
ahead, but the temperature of the melt can be mainly imposed by a high thermal coupling with 

the surroundings. 
Kinetic effects are implicitly handled by PF models, and can be adjusted by an adequate 

form of the potential and/or by the time relaxation exponent (Fabbri and Voller, 1995; 

Fazenda, Travelho and Fabbri, 1996).  Asymptotic analysis (Karma and Rappl, 1996) shows 

that PF models with linear time relaxation always imply linear interface kinetics for low local 
undercoolings.  We here describe a simple procedure to match the PF kinetic parameters to 

the actual known material properties. 
The paper is organized as follows.  First we review briefly the PF basics and establish the 

notation and our specific choices; we also describe a simple "travelling-wave" small 
expansion around the interface region that explains the common linear kinetic behavior of the 
PF equations.  Then, the correct "sharp interface limit" is numerically verified for a well-

known classical problem for supercooled solidification (the benchmark).  We next implement 
a PF model with a Biot-source type term, describe a calibration procedure which conforms to 

the asymptotic analysis, and give results about the computed interface kinetics for a range of 
Bi values. 

 

2. THE PHASE-FIELD EQUATIONS AND ASYMPTOTICS 

 

2.1 Phase equation and potential 

 
PF models introduce a phase variable p(x,t), the values of which describe the phase state 

of the material on position x at time t.   We choose the value +1 corresponding to liquid,  and 
-1 to solid.  The solid-liquid (S-L) interface is defined by points at which p=0.  In practice, 

there is always a transition layer of width ε between the solid and liquid phases (Fig. 1), 
which can be made as small as desired, in order to approximate a sharp interface. 
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Figure 1 – The order parameter in the PF model describes a diffuse 

interface between phases, with characteristic length ε 

 
Caginalp and Sokolovsky (1991), and Fabbri and Voller (1997) have shown that the use 

of a suitable large numerical value for ε does not compromise the solutions of the PF 
equations as far as interface progression and temperature histories are concerned (that does, 
however, introduce a cutoff for short wavelengths which could hinder a selection process in a 

non-isotropic multidimensional medium). 

The system total free-energy F can be written as a first-order expansion in the field  p 

(Landau expansion), and the temperature T: 
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In Eq. (1), > is a characteristic length of order ε.  Minimization of the functional F with 

respect to the order parameter p, followed by a relaxation-time approximation (Fabbri, 1994) 

with characteristic time ", gives the phase evolution equation 
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Solidification (that is, the S-L interface progression) is driven by the potential term 

f(p,T),  which shall have minima at p=±1, corresponding to equilibrium solid and liquid states 
(Fig. 2). 

The diffuse interface theory (Allen and Cahn, 1979) relates the surface tension F to the 

potential f and to the characteristic length >, as follows: 
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The potential f(p,T) can be chosen by numerical convenience, provided it has the 

qualitative features depicted in Fig. (2).  The detailed form of f(p,T) actually has some impact 
on the linear behavior of the kinetic parameter, as will become clear later.  We follow 

Kobayashi (1993), and write f(p,T) as a fourth degree polynomial with fixed minima at ±1: 
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Figure 2 – The phase-field potential, with temperature-dependent local 
minima.  TM is the equilibrium melting temperature. 

 
W is an arbitrary constant (related to the entropy scale), and the temperature-dependent 

term m(T) must satisfy |m(T)|<1, in order to have df/dp with three distinct roots.  We choose a 
simple linear form (from here on, we assume TM=0): 

 

m(T) = 2(T      (5) 
 

, restricting ( to a maximum value such that –1<m<+1 for every possible value of 
temperature the system may exhibit. 
 

2.2 Kinetic relationship for small undercooling 
 

If a travelling wave solution to Eq. (2) is assumed, then p(x,t) = p(η) = p(x-vt) satisfies 
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We have written φ=∂f/∂p and v is the local interface velocity.  A linear expansion of p in 

terms of  η (p∼aη) around the interface region Γ (p=0) then gives at once a linear kinetic 
relation between the local speed and temperature: 
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The constant a in Eq. (7) can be expressed in terms of ξ, and a detailed asymptotic 
analysis carried out by Karma and Rappel (1996b) gives 
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, where a1 is a constant of the order unity which depends on the detailed form of the 
potential f(p,u). 
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2.3 Thermal transport 

 
Eq. (2) for the phase field must be coupled to a heat transport equation for temperature.  

A simple model is the usual Fourier law with a source term to account for the latent heat 
release L at the interface: 
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D, K and c are the medium density, conductivity and specific heat, respectively.  Eq. (9) 
can be given any desired form, including cases when the thermophysical properties vary 

between phases. 
The system of coupled non-linear equations (2) and (9) are then solved over the domain 

of interest, subjected to the appropriate initial and boundary conditions for the phase and 
temperature fields.  The S-L interface location is determined a posteriori, simply by locating 

points where the phase variable p crosses zero. 
It should be noted that nucleation cannot be taken into account by a mean-field model, 

such as the Phase-Field free-energy minimization, based on the Landau expansion to the 
second order, Eq. (1).  Being a fluctuation process, nucleation could be simulated within the 

PF model by introducing noise in the phase evolution equation.  Another usual procedure is to 
specify an initial layer of solid as a starting point for PF simulations.  

 

3. SHARP-INTERFACE LIMIT IN THE TWO-PHASE UNDERCOOLED 

STEPHAN PROBLEM 
 

Benchmark quantitative tests were intensively made for the PF solutions (Fabbri and 
Voller, 1995 and 1997, Fabbri, 1994), and they allow confidence in the numerical results for 

engineering applications. 
The overall result shows that excellent agreement between PF simulations and the 

expected interface progression, field profiles and temperature histories can be attained for a 

computational value of the interface characteristic length ξ much larger than the actual 
(microscopic) solid-liquid interface layer.  In this respect, a classical solution to a phase-

change problem is referred to as the "sharp-interface" limit of the PF model (an excellent 
recent review on that subject has been provided by Skerka, 2004). 

A somewhat stringent test is the solidification from an initially supercooled melt 
(T(x,0)=Tinit<TM, and T(0,t)=Ts<TM for t>0).  This gives rise to the so-called “two-phase 

supercooled Stephan problem”, which is classically modeled by imposing an S-L interface at 
T=TM, that advances through the melt with latent heat release.  In this case, heat transport is 

away from the interface in both directions.   It is well known that it is not possible, in more 
than one dimension, to maintain a flat stable interface in that situation (Kurz and Fisher, 

1992).  In one-dimensional approximations (slab solidification), there is a similarity analytical 
solution for semi-infinite domains (Alexiades and Solomon, 1993). 

As an illustration (Fabbri, 2000), we consider a 5cm slab of water initially at –10oC but 
still liquid, impose the fixed temperature –20oC at the left wall (x=0), and started 

solidification at time t=0.  We show in Fig. (3) the PF numerical results as compared to the 
similarity solutions after an initial layer of solid was already grown up to x0=0.5cm.  As the 

analytic solutions are valid for a semi-infinite domain, the boundary temperature at the right-
end was kept time-dependent and equal to the value prescribed by the similarity-solution.  The 

pictures also show the numerical PF results for a finite domain, when the right-wall 
temperature is kept constant at –10oC. 
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Figure 3 - Comparison between PF calculations and analytic solutions for a model 

two-phase undercooled Stephan problem 
 

 
The PF simulation was done over a fixed-grid control-volume discretization with a 500-

point mesh.  A typical run takes less than half a minute in a 600MHz Pentium III personal 
computer and a gcc compiler. 

 

4. THERMAL TRANSPORT WITH AN EXTERNAL HEAT SINK 

 

4.1 PF equations 

 
We now consider a one-dimensional (with unit cross-section) slab of a pure material with 

heat coupling to a thermal sink of known profile T∞(x), in which case the PF model reads 
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The external heat coupling is described only by an effective heat transfer coefficient h, 

with corresponding non-dimensional Biot number Bi = h/αT ,  αT = K/(ρc) being the heat 
diffusivity.  

Cases of interest here are when the liquid is kept undercooled (T ≤ TM) at all times; if the 
liquid is at an initial uniform temperature  T0, the Stefan number is defined as St = L/c(TM-T0) 
and is a dominant parameter for the solid-liquid interface progression. 

The PF simulation starts from an initial state where a solid layer is already defined in the 

region 0 ≤ x ≤ x0.   We also take T∞ constant and uniform, given that the detailed profile of 

the heat sink  is not of concern here.  Therefore, for a slab length l, we work with the 
following initial and boundary conditions: 
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4.2 Model calibration 

 

The regime Bi→∞ can be used to set the potential-dependent constant a1 in the linear 

kinetic relationship, Eq. (8).  In that limit, we have T(x,t) = T0 = T∞ and only Eq. (10b) is to 
be solved for the S-L interface progression. 

For large undercoolings, provision must be made for small deviations of linearity.  In 

practice, kinetic undercoolings at the S-L interface range from very small values (typical of 
metals, around one Kelvin per meter/second), to a thousand times greater (typical of organic 

substances, around one Kelvin per millimeter/second).  Since non-linear deviations are likely 
to be strongly potential-dependent, calibration must be done for each specific range. 

The Kobayashi potential, Eq. (4), has the advantage of displaying fixed minima at p = ±1 

at all temperatures, provided that the condition -1 < 2γT < +1 is met.  The actual value of γ 
affects the form of the double-well potential around those minima, and working too close to 

the threshold may introduce artificial non-linearities.  In this respect, it is convenient to 

express γ in terms of an entropy scale, defined by the solid-liquid phase change at TM.  Since 

the entropy S can be obtained from the derivative of the free-energy F with respect to 

temperature, integration of φ(p,T) in the interface region, from solid to liquid, gives at once, 
for the Kobayashi potential, 

W

S6∆
=γ          (12) 

, where ∆S = (Sliq - Ssolid) at TM. 
 

We found that, for the Kobayashi potential, the smaller the entropy scale, linearity is 
maintained for higher undercoolings.   

We show in Fig. (4) the numeric results of  our PF runs for Bi→∞ both for small and 

high kinetic coefficient, for ∆S=0.025. The model is calibrated by linear fitting over a range 

of values for the undercooling ∆T.  It is seen that, provided the entropy scale is given a small 

enough value, kinetic non-linear deviations in the Kobayashi model are very weak and can be 
disregarded for most applications. 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Figure 4 - Linear fitting the form parameter a1 for the linear kinetic 

relationship in the PF-Kobayashi model.   
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Details of the PF computation are as follows: Eq. (10b) is discretized over a fixed-

control-volume grid, totally-implicit in time.  The tridiagonal non-linear system of equations 
is solved iteratively by a local-source linearization scheme.  An N=500 uniform mesh cover 

the x-domain [0, l], such that ∆x = l/N, and the time interval ∆t is chosen as large as possible 

as far as convergence is obtained.  The slab length is l=5cm, the interface length parameter ξ 

= 1.25∆x, and W=8.0.  Those PF settings were the same as the ones employed  in the 

simulation of the two-phase undercooled Stephan problem described above in Section 3. 
 

 
 

 

5. PF RESULTS FOR FINITE BIOT VALUES 

 
 

The interface progression and temperature, as well as a typical temperature history were 

computed for values of Bi ranging from 0 (pure conduction inside the material) to ∞ (fixed 
uniform temperature, as described in the preceding Section).  We set the material parameters 

as K=c=ρ=L=1 (St=1.0), and the domain is initially at T0=0.0.   

We see in Fig. (5) the computed interface progression, both for small (α=0.06, 

corresponding to 2.0 Kelvin per meter/second) and large (α=6.0, corresponding to 2.0 Kelvin 

per centimeter/second) kinetic coefficients.   The (fixed) temperatures of the heat sink were 

T∞ = -0.10 and -12.0, respectively. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Figure 5 - Interface progression as computed by the PF model for a range 

of Biot numbers. 
 

 
We note that there were no qualitative differences between the results for small and large 

kinetics, so we display in Fig. (6) and (7) the interface temperature and history at x=2.5 only 
for the small kinetic case. 
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         Figure 6 - Temperature at S-L interface as computed by the PF model. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

         Figure 7 - PF results for the temperature history at location x=2.5cm. 
 

It is worth noting in Fig. (7) the sharp raising of the local temperature during the passage 
of the interface, which becomes sharper with increasing values of the Biot number. 

All simulations were done in a 650MHz Pentium III personal computer with a gcc 
compiler, and a typical run takes less than half a minute. 

 
 

6. CONCLUSIONS AND COMMENTS 

 

We have described a simple numerical procedure to match the kinetic parameters of the 
phase-field technique to the actual material properties.  Our numerical simulations show that, 

for the Kobayashi potential, the form factor that appears in Karma and Rappel's  analysis is 
indeed very close to unity.   
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As an illustration, we have worked out some simple examples of PF simulation in the 

presence of high undercooling, and those are to be compared to classical models, where the 
interface kinetics are treated ad hoc.  In PF models, the underlying physics is treated in a very 

natural manner, and metastable states require no additional assumptions.  
This work is a first step towards applying PF methods for laser-assisted rapid 

solidification, where solidification rates approach the diffusive atomic velocity at the 
interface, and therefore large deviations from local equilibrium are expected. 

The predicted linear relation between front speed and temperature for low undercoolings 
is an essential feature of the PF equations, and non-linear effects for very high front speeds 

are potential-dependent.   In that respect, more research is needed in order to model PF 
potentials directly from the material thermodynamics (constitutive equations), which could 

explain the variety of observed material-dependent experimental behavior. 
It should be noted that distinct PF models can be tailored which exhibit essential non-

linear kinetic behavior (Fazenda, Travelho and Fabbri, 1996); that can be done either by a 
non-linear temperature dependence of the potential or by adopting a non-linear relaxation 

towards equilibrium.  Also, in two or three-dimensional simulations, the interfacial kinetics 
can be made anisotropic, which is suitable to treat, e.g., faceted crystal growth (Uehara and 

Skerka, 2003). 
Recently, kinetic-dominated models were reported for the study of morphological 

transitions at high undercoolings.   The usual formulations of the PF model, for those 
purposes, require an interface length of the order of the capillary length, and are very 

computationally expensive.  A modification of the PF potential which allows computation for 
an interface thickness many times greater than the capillary length was recently proposed by 

Vestigian and Goldenfeld (2003). 
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